K+ channel KV3.1 associates with OSP/claudin-11 and regulates oligodendrocyte development.
نویسندگان
چکیده
K(+) channels are differentially expressed throughout oligodendrocyte (Olg) development. K(V)1 family voltage-sensitive K(+) channels have been implicated in proliferation and migration of Olg progenitor cell (OPC) stage, and inward rectifier K+ channels (K(IR))4.1 are required for OPC differentiation to myelin-forming Olg. In this report we have identified a Shaw family K(+) channel, K(V)3.1, that is involved in proliferation and migration of OPC and axon myelination. Application of anti-K(V)3.1 antibody or knockout of Kv3.1 gene decreased the sustained K(+) current component of OPC by 50% and 75%, respectively. In functional assays block of K(V)3.1-specific currents or knockout of Kv3.1 gene inhibited proliferation and migration of OPC. Adult Kv3.1 gene-knockout mice had decreased diameter of axons and decreased thickness of myelin in optic nerves compared with age-matched wild-type littermates. Additionally, K(V)3.1 was identified as an associated protein of Olg-specific protein (OSP)/claudin-11 via yeast two-hybrid analysis, which was confirmed by coimmunoprecipitation and coimmunohistochemistry. In summary, the K(V)3.1 K(+) current accounts for a significant component of the total K(+) current in cells of the Olg lineage and, in association with OSP/claudin-11, plays a significant role in OPC proliferation and migration and myelination of axons.
منابع مشابه
Osp/Claudin-11 Forms a Complex with a Novel Member of the Tetraspanin Super Family and β1 Integrin and Regulates Proliferation and Migration of Oligodendrocytes
Oligodendrocyte-specific protein (OSP)/claudin-11 is a major component of central nervous system myelin and forms tight junctions (TJs) within myelin sheaths. TJs are essential for forming a paracellular barrier and have been implicated in the regulation of growth and differentiation via signal transduction pathways. We have identified an OSP/claudin-11-associated protein (OAP)1, using a yeast ...
متن کاملClaudin-11/OSP-based Tight Junctions of Myelin Sheaths in Brain and Sertoli Cells in Testis
Members of the newly identified claudin gene family constitute tight junction (TJ) strands, which play a pivotal role in compartmentalization in multicellular organisms. We identified oligodendrocyte-specific protein (OSP) as claudin-11, a new claudin family member, due to its sequence similarity to claudins as well as its ability to form TJ strands in transfected fibroblasts. Claudin-11/OSP mR...
متن کاملCNS Myelin and Sertoli Cell Tight Junction Strands Are Absent in Osp/Claudin-11 Null Mice
Oligodendrocyte-specific protein (OSP)/claudin-11 is a recently identified transmembrane protein found in CNS myelin and testis with unknown function. Herein we demonstrate that Osp null mice exhibit both neurological and reproductive deficits: CNS nerve conduction is slowed, hindlimb weakness is conspicuous, and males are sterile. Freeze fracture reveals that tight junction intramembranous str...
متن کاملActivation and control of pathogenic T cells in OSP/claudin-11-induced EAE in SJL/J mice are dominated by their focused recognition of a single epitopic residue (OSP58M).
Oligodendrocyte-specific protein (OSP)/claudin-11 has been recently implicated in multiple sclerosis pathophysiology. Yet, the pathogenic autoimmunity against OSP has been poorly investigated. We previously showed that OSP-induced experimental autoimmune encephalomyelitis (EAE) and optic neuritis in SJL/J mice are primarily associated with CD4+ T cells reactive against OSP55-80. Dissecting the ...
متن کاملThe Shaw-related potassium channel gene, Kv3.1, on human chromosome 11, encodes the type l K+ channel in T cells.
T lymphocytes exhibit three distinct types of voltage-gated K+ channels, n, n', and l, that are distributed in the T cell lineage according to subset, as well as the cells' activation and developmental status. Type l K+ channels are found sparingly in cytotoxic T cells from normal mice and abundantly in a specific T cell subset (CD4- CD8- Thy1+) from mice with autoimmune disease. Here, we show ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 291 4 شماره
صفحات -
تاریخ انتشار 2006